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Disclaimer

The opinions expressed in this presentation are those of the author only. They are inspired by the
work that the author is doing for both Swiss Re and the SAA, but they do not necessarily reflect any
official view of either Swiss Re or the SAA.



Machine Learning in the insurance industry

Dr. Tobias Biittner, Head of Claims, Munich Re, mentioned the following®:

Property claims were assessed using images.

But later the reserves had to be increased significantly. Damages
below/hidden in the roofs have not been appropriately estimated.

Implications of the use of Machine Learning (ML) in insurance:

* ML can affects operations, which impact the data actuaries use (i.e. claims, underwritten risks,...)
* ML can affect the underyling risks

* ML can be used to strenghten the core skills (extend the actuary’s toolbox)

« Automation (not necessarily ML) can help to improve efficiency

1SZ-Fachkonferenz: Kl und Data Analytics in der Versicherungsbranche; Data Analytics im Management von GroRschaden, Bittner T. (2019), Munich Re
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1. Factor embeddings in neural
networks?



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525

Motivation and data

* Ininsurance pricing, categorical variables (i.e. vehicle brand, region,...) consist of many levels.

* They are often encoded as dummy variables (or one-hot encoding), i.e. the levels are orthogonal in the feature space.

* Potential improvements:
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Grouping of variable levels (by...)

Use longitude/lattitude for geographical factor variables

Embedding with Neural Networks
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Neural networks with one-hot encoding
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With Neural Networks, there is a challenge when
using one-hot encoding:

The number of parameters gets large due to the
neural network architecture.



How embeddings work

* Embeddings are very well known in Natural Language Processing (NLP), and significant progress has been made due to
embeddings.

d-dimensional embedding:

e:{R4,...,R,} —» R?

Region ~ e(region) = (elregion, ezregion)

Dimension 2

v

Dimension 1

* The embedding weights ejregion are learned during model training.

 Embeddings can be included as other specialized layers (drop-out, normalization,...)



Neural Network architecture
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Embedding weights

2-dimensional embedding of VehBrand
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references for further details).
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2—dimensional embedding of Region
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Using the keras library, there are just a few lines of code to define the embeddings (see the

The embedding can help to group factor levels based on the data (similar levels are close).
Care is needed as the 2-dimensional embedding visuals are subject to rotation.
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2. Combined Actuarial Networks
(CANN)?

1 paper(s): https://doi.org/10.1017/asb.2018.42; https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525
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https://doi.org/10.1017/asb.2018.42
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525

ldea to nest a GLM into a neural network

* We usually have already a GLM in production. So we would like to include this knowledge in the neural network.

* Henceforth, the neural network shall identify structure not captured by the current GLM.

* With such an approach, the neural network can be considered as a «challenger model» compared to the «benchmark
model».

* Using a so-called «skip connection»:
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(Part of) mathematics for CANN

e Linear predictor with regression parameter 3 = (f3;,....3,)" € RI*!

Pq
zeXCRI — 0°MMz.p)=(8.2) €O,
> Feature pre-processing is done by the actuary/statistician.
e Choose network of depth d € N with network parameter w = (W14, wg.1)
zeRY4 — PN(z:wy. ) = (wgyy1,z) € O,
with neural network function (feature pre-processing x +— z)

r — z = 2@ (z) = (z(d) 0---0 z(l)) ().

> Feature pre-processing is done by the d hidden network layers.

e Choose linear predictor with parameter (3, w) = (8, Wi.q, wq11)

T — HCANN(:I:;B,w) = -::j:._%.fi'}-+<wd+1,§(d:1)(w)>.
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Why is this useful?

e Extension of GLM (unfortunately not for GAM).

* One way of including expert knowledge in a Neural Network.
* GLM as good starting value for the optimization.

* Identification of missing interactions in the current GLM.

* Enables uncertainty quantification as good starting value for the optimization.

15



3. Portfolio bias in neural
networks?



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3347177

Unbiased portfolio average

For insurance pricing, we expect that the model provides unbiased estimates on the portfolio level.

* Assume

ind. {yé‘;‘ — b (67

g * Ik ) " ,
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* The true portfolio average is given by:
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* For the homogenous model, i.e. where all customers have the same frequency, it holds:

Proposition 2.2. Assume that true model is given by (2.3). The MLE of the homoge-
neous model provides an unbiased portfolio average, that is,

n

E [[Lh‘""] = ", with uncertainty Var (a"™) = — Z w;(b*)"(67).

i=1 ll'i) i=1
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GLM unbiased portfolio average

* For a GLM, assuming

* holds:

This means that the GLM provides the same overall portfolio level as the homogenous model.

» ind. . b fanr. s o yﬁT — 5{97) e h fene
Y; f(y; 0, &/w;; b) —E-KP{W-I—C{%@/R-;)},

Corollary 2.3. Assume that true model is given by (2.3). The MLE of the GLM provides
an unbiased portfolio average, that is,

Ti

E ﬁGLM :}__I*, with uncertainty Var EGL!".-]} — ﬂm—* u’;{b*}”{ﬂ;}-
[ ] [ [zi=l u'lz'.:lz ;
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Portfolio bias in neural networks

For a neural network:
* The MLE would result in overfitting.
* The gradient descent method (GDM) includes early stopping, hence it stops before reaching a local minimum.

* The solution is not unique, and it even depends on the random seed used! So individual prices depend on the chosen
seed.

* For an example, figures are as follows:

Figure 1.2. Remark that the evaluation of (3.5) requires knowledge of the true means p}

which are available in our special set-up.

# in-sample estimation | portfolio
param. loss error av,
Lp(p) Eur (1) ji
(a) true model pf 27.7278 0.0000 0.1991%
(b) homogeneous model phom = jhom 1| 29.1065 1.3439 \/10.2691%
(c) GLM p$tM o7 | 28.1282 0.4137 10.2691%
(d1) neural network i run no. 1 780 | 27.7204 0.1566 10.2973%
(d2) neural network N run no. 2 780 | 27.7484 0.1795 10.0661%
(d3) neural network 72N run no. 3 T80 | 27.7621 0.1669 0.0605%




Avoid portfolio bias

The following approaches for overcoming the bias in neural networks are suggested:

* Based on the neurel network estimates, re-fit a glm with the weights from the last hidden layer as new covariates, then it

results in an unbiased estimated portfolio average.

* Penalty term on the portfolio average inducing an additional tuning parameter.

Numerical results as follows:

# in-sample estimation

param. loss error

To()  Ee(w)
(a) true model pu} 27.7278 0.0000 10.1991%
(b) homogeneous model ghom = ghom 1| 29.1065 1.3439 10.2691%
(¢) GLM M 57 | 28.1282 0.4137 10.2691%
(d1) neural network '™ run no. 1 780 | 27.7204 0.1566 10.2973%
(d2) neural network i run no. 2 T80 | 27.7484 0.1795 10.0661%
(d3) neural network '™ run no. 3 780 | 27.7621 0.1669 10.0605%
(e1) GLM neural network fi; "+ run no. 1 780 | 27.7142 0.1605 10.2691%
(e2) GLM neural network i} " run no. 2 780 | 27.7428 0.1825 |\ 10.2691%
(e3) GLM neural network i} " run no. 3 780 | 27.7555 0.1654 0.2691%

N4
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4 — Random Forest!

1 Paper(s): https://arxiv.org/pdf/1904.10890.pdf, https://kuleuvencongres.be/eaj2018/documents/presentations/1-roel-henckaerts.pdf
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Random Forest

Motivation: R Universe

e Standard random forest implemenations use the
mean squared error (L,) loss.

* L, is a priori not the right loss function for claim

frequency and severity.

Solutions: Regression tree

 distRforest: decision trees and random forest for
frequency (Poisson) and severity distributions Random forest
(Lognormal, Gamma) (GitHub) filling the gap.

Filling the gaps
Model Poisson Gamma
o v v
Generalized linear model
stats stats
v v
Generalized additive model
mgcv mgcv
v v
rpart rpart*
v v
rpart* rpart*
Gradient boosting machine v v
gbm harrysouthworth /gbm

rpart™ is the distRforest package, which is an extension of rpart

22


https://github.com/henckr/distRforest

5 — Model Risk Management



Literature for Neural Networks

‘Machine
Decisions’:
Governance of Al
and Big Data
Analytics; CRO
Forum (2019)

* «..that model governance techniques and
frameworks that exist today do not need to be
fundamentally altered, but can be enhanced
and adjusted to meet the evolving needs of
complex tools and machine learning
developments»

* Model Management Framework

e Ethical Framework

Believing the Bot - Model Risk in the Era of Deep Learning

Ronald Richman* Nicolai von Rummell' Mario V. Wiithrich*

Version of August 29, 2019

Abstract

re currently being introduced int

to support
companies. At the same tim

the development and implement of Deep Learning me
and mortality fo
risks. We discus:

ic model risks and controls to mi

1 the role that model risk man

of Deep Learning models

Keywords. Deep learning. Model Risk, Pricing, Martality Forecasting, Insurance Modelling

1 Introduction

Deep learning refers to a modern approach to designing and fitting neural networks that recently

«

ate of the art results on machine learni

problems in computer vision, 1

ural

processing, machine translation and sy

ch recognition, and has become the main

wenue for sol

nstructured data problems [1, 2]. Tn addition to unstructured data, deep

learning approaches have produced promising results on structured data problems [3], as well as

time series forecasting [4]. Modern neural networks are generally characterized by specialized

architectures that are adapted to domain-s

fic problems, as well as by the depth of the

networks, meaning to say, that these networks are composed of multiple layers of non-linear

functions. Recently, deep le techniques have been applied to problems within actuarial

science such as pr

reserving, analysis of telematics data and mortality forccasting. For a

recent review of these applications, see [5]. The benefits of applying deep learning to actuarial

Model Risk for NN

Guideline for fitting a NN for
Pricing

Insights from Inside Neural Networks
Andrea Ferrario* Alexander Nollt Mario V. Wiithrich?

Prepared for:
Fachgruppe “Data Science”

Swiss Association of Actuaries SAV

Version of July 12, 2018

Abstract

We provide a tutorial that illuminates the use and interpretation of neural network regression
models for claims frequency modeling in insurance. We discu:

atlre pre-proces
ce problem
r insurance

of loss func

hoice of neural network architecture, class imb s well as

over-fitting. iscussion is based on a publicly available real

set.

Keywords. neural networks, architecture, over-fitting, loss function, dropout, regulari;

tion, LASSO, ridge, gradient descent, class imbalance, car insurance, claim
son regression model, machine learning, deep learning

quency, Poi
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Key points?

Using neural networks for actuarial modeling, care is needed:
(1) The neural network results depends to some extend on the random seed.
(2) Neural networks may fail to reproduce portfolio averages.

(3) Neural network results may not be stable over time.

For model risk management of deep learning models, the following points are crucial:
(1) Feature engineering is performed by the neural network

(2) Alarge space of potential models is explored

(3) Focus on predictive accuracy using an explicit loss function

(4) Stochastic training of the models

Carefully check unwanted biases (gender, ethnicity,...) using appropriate techniques

1 paper(s): https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3444833



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3444833

6. Summary



Conclusions

 Statistical learning methods and neural networks allow to fit dependency structures naturally
beyond the (currently used) GLM.

* CANN provide the framework for extending the GLM’s, allowing to improve the accuracy of the
model as well as providing a framework to assess the uncertainties.

* Model risk management needs to be addressed carefully for machine learning models

* Neural networks can be easily implemented using the keras package (in R or Python)

And yet, a very well calibrated GLM may still be as good as an advanced machine learning model in
terms of accuracy.
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(Our) Topics in Actuarial Data Science

We have written the following six tutorials:

French Motor Third-Party Liability Claims: Introduction, boosting and neural networks for P&C Pricing
Insights from Inside Neural Networks: Guidance how to fit neural networks for insurance data
Nesting Classical Actuarial Models into Neural Networks: Embedding of GLM’s into neural networks
On Boosting: Theory and Applications: Boosting and its variant illustrated with a P&C Kaggle dataset

Unsupervised Learning: What is a Sports Car?: Unsupervised learning techniques applied in P&C

ou el g e e e

Lee and Carter go Machine Learning: Recurrent Neural Networks: LSTM NN applied to mortality forecasting

We are working on the following: Further topics and ideas:

* Missing data and data imputation

* Dissimilarity measures for categorical variables
* Graphical Models / Causality?

* GAN?

* Performance measures and visualizations?

* Spatial modeling and random (Gaussian) fields?

* Natural Language Processing and RNN’s

* Segmentation using decision trees

* Mortality forecasting and CNN’s

* Explainability / Interpretability of machine
learning models
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ADS basics: Articles and repositories

The following articles/repositories are fundamental for entering the topic of Actuarial Data Science (ADS):

Data Analytics for Non-Life Insurance Pricing, ETH Zurich, M.V. Wiuthrich and C. Buser

Al in Actuarial Science, R. Richman, SSRN, 2018
ADS Tutorials, SAA, 2018-present

Insurance Analytics — A Primer, International Summer School of the Swiss Association of Actuaries, 2018

Insurance Data Science: Use and Value of Unusual Data, International Summer School of the Swiss Association of
Actuaries, 2019

Model Risk Management:

‘Machine Decisions’: Governance of Al and Big Data Analytics, CRO Forum, 2019

Believing the Bot — Model Risk in the Era of Deep Learning, R. Richman et. Al, arXiv, 2019
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https://www.actuarialdatascience.org/ADS-Tutorials/
https://github.com/fpechon/SummerSchool
http://egallic.fr/lausanne/
https://www.thecroforum.org/wp-content/uploads/2019/05/CROF-Machine-Decisions-Governance-of-AI-and-Big-Data-Analytics.pdf
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ADS basics: R packages!?

ML meta packages: Neural Networks: Machine/Statistical Learning excl. NN
- caret - keras - rpart
- mir - ranger, randomforest, distRforest

- Xgboost, gbm
- Cluster, clusterR, tsne, umap, kohonen

data: Visualisations: - glmnet
- tidyverse - ggplotZ
- data.table - Datakxplorer
- esquisse -
Interpretability: Others:
- iml - Rmarkdown

Insurance data: - flashlight - kshiny

- CASdatasets
- Simulationengine

1R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
2 CRAN Task View: Machine Learning & Statistical Learning, T. Hothorn, 2019
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